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Abstract— Chemistry laboratory automation seeks to in-
crease throughput, reproducibility, and safety, yet many existing
systems still rely on frequent human intervention. Recent ad-
vances in robotics have reduced such dependency, but without a
structured representation of the required skills, their autonomy
remains constrained to bespoke, task-specific solutions with
limited capacity to transfer beyond their initial design. Existing
experiment abstractions primarily encode protocol-level steps,
without specifying the robotic actions needed to carry them
out. This gap reflects the absence of a systematic account
of the manipulation skills required for robots in chemistry
laboratories. To fill the critical gap, this work introduces
TARMAC - a TAxonomy for Robot MAnipulation in Chemistry
— a domain-specific taxonomy that defines and organizes the
core manipulations required in chemistry laboratories. Using
annotated teaching-lab demonstration and supported by exper-
imental validation, TARMAC categorizes actions according to
their functional role and physical execution requirements. In
addition to serving as a descriptive vocabulary, TARMAC can
be instantiated as a robot-executable primitives and composed
into higher-level macros, enabling the reuse of skills and sup-
porting scalable integration into long-horizon workflows. These
contributions establish a structured foundation for more flexible
and autonomous laboratory automation. More information can
be found at https://tarmac-paper.github.io/

I. INTRODUCTION

Chemistry laboratory automation has been a central pur-
suit in science and engineering for decades, motivated by
the need to accelerate discovery, reduce human workload,
improve reproducibility, and enhance operator safety. During
this period, a wide range of customized systems and commer-
cial platforms have been developed, each addressing specific
experimental workflows or domains. However, despite their
growing sophistication, many of these platforms still rely
on frequent human intervention — particularly for tasks that
demand dexterity, contextual awareness, or fine manipulation
— limiting the extent to which experiments can be performed
fully autonomously.

Recent advances in robotics offer new opportunities
to overcome the aforementioned limitations [1]. General-
purpose robotic platforms, including mobile manipulators,
have been demonstrated to execute laboratory workflows
with minimal supervision [2]. Beyond mobility, increasing
attention has turned to the manipulation capabilities of these
systems, as the essence of experimental practice lies in the
ability to handle objects, tools, and materials with a high
degree of precision. Studies utilizing robotic arms to operate
vials and prepare samples [3] demonstrate how manipulators
can take over tasks that would otherwise require human
intervention in existing automation platforms. Yet achieving
true autonomy requires expanding beyond the execution of
pre-arranged workflows to address a wide range of dexterous

operations that current systems cannot perform reliably.
These include not only the initial setup of experiments
— such as preparing reagents, calibrating instruments, or
connecting fluidic pathways — but also other skill-intensive
tasks throughout experimentation [4]. This reveals a critical
gap in establishing a well-defined set of robotic skills that
can comprehensively cover the requirements of laboratory
practice.

A key challenge lies in how such skills are defined,
organized, and made accessible to both robotic systems
and human researchers, identifying current capability and
outline challenges and outlooks. Recent perspectives on
laboratory automation emphasize that modular architectures
are essential to support interoperability and reusability of ex-
perimental procedures [5]. Existing digital frameworks, such
as chemistry descriptive language (xDL) [6], capture high-
level intent of how experiments are performed but remain
agnostic to the physical execution of actions. They describe
what to do, but not how the underlying manipulations should
be performed — an abstraction that facilitates hardware-
agnostic protocol design but leaves the concrete requirements
of robotic execution unspecified. Bridging this gap demands
a structured vocabulary of laboratory actions —- one that
reduces ambiguity, supports systematic reuse of skills, and
enables robots to interpret, plan, and execute experiments
with fidelity.

This work introduces TARMAC — a TAxonomy for Robot
MAnipulation in Chemistry — designed to categorize and
describe the core manipulations required in laboratory prac-
tice. As illustrated in Figure [II TARMAC is derived
from annotated demonstrations from teaching-lab videos and
experiment handbooks with experimental validation and
developed through a joint effort between chemists and roboti-
cists, combining knowledge from both domains to organize
laboratory actions into categories that reflect both their
functional role in experiments and their physical execution
requirements. Beyond serving as a structured vocabulary,
TARMAC can be instantiated as atomic action primitives,
which can then be composed into higher-level workflows or
integrated with large language models (LLMs) for planning
and execution. In this way, it bridges the gap between
protocol-level descriptions familiar to chemists and the robot-
executable skills required for automation.

The contributions of this work can be summarized as
follows:

¢ A domain-specific taxonomy (TARMAC) that system-

atizes manipulation skills in chemistry.

« An annotated dataset of laboratory manipulations sup-

porting taxonomy development and evaluation.
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Fig. 1: Overview of the TARMAC framework. Laboratory manipulations are first derived from annotated teaching-lab
demonstration vidoes and analyzed through feature extraction and experimental validation. These actions are then organized
into the TARMAC taxonomy, which provides a structured vocabulary of primitives. The primitives can be directly executed by
a robotic platform or composed into higher-level macros, which are exposed through a standardized interface (e.g., Model
Context Protocol). This pipeline enables natural-language instructions descriptions to be translated into robot-executable
workflows, thereby bridging human intent and robotic capability in the laboratory.

o A proof-of-concept framework showing how TARMAC  A. Lab Automation
can ground action primitives and enable LLM-driven

translation of instructions into robotic execution. Automation in chemistry has been a longstanding pursuit,

with origins tracing back to early laboratory devices and later
formalized through structured methodologies such as Design
of Experiments (DoE) and High-Throughput Experimenta-
tion (HTE) [7]. These approaches established that the value
of automation lies not only in mechanical execution, but also
in systematic abstraction, allowing experiments to be scaled,
replicated, and optimized efficiently. This foundation set
the stage for increasingly sophisticated forms of laboratory
autonomy.

Recent advances in robotics have emerged as a promis-
ing direction for pushing automation further [1]. Robotic
systems bring the ability to manipulate diverse laboratory
tools and materials directly, thereby reducing human inter-

This section reviews three strands of prior work that vention and enabling higher levels of autonomy in experi-
inform the development of the taxonomy. The first concerns  mental workflows [4]. Landmark studies employing mobile
laboratory automation systems, particularly those incorpo-  manipulators have shown that autonomous platforms can
rating robotic manipulators, which illustrate the state of coordinate distributed laboratory stations to execute complete
the art in executing chemistry experiments and demonstrate ~ workflows with minimal human intervention [2], and more
how procedures can be abstracted into executable steps. The  recently, have been extended to exploratory synthetic chem-
second strand examines existing manipulation taxonomies, istry through the integration of diverse analytical modalities
which formalize action spaces through structured vocabu-  and heuristic decision-making [8]. Beyond this opening, in-
laries in other domains and thereby highlight the need for creasing attention has turned to the manipulation capabilities
a chemistry-specific taxonomy. The third strand considers of robots themselves. Subsequent efforts have extended
research on large language models (LLMs) in robotics, where  these workflows by incorporating robotic manipulators to
advances in long-horizon planning and reasoning motivate  replace specific stations, enabling tasks such as vial opening
the instantiation of the taxonomy as a bridge between abstract  and sample preparation [3]. Beyond such integrated systems,
instructions and executable skills, reinforcing the need for a  robotic arms have also been demonstrated to perform more
well-defined action space. dexterous laboratory skills in isolation, such as pouring [9]

The remainder of this paper is structured as follows.
Section [[I] reviews previous work in laboratory automation
and robotic manipulation taxonomies. Section [[Il outlines the
methodology used to derive the proposed taxonomy, which is
then presented in detail in Section Section |V| provides an
analysis of the taxonomy, while Section [V demonstrates its
practical validation through a framework applied to represen-
tative laboratory tasks. Finally, Section [VII] discusses the key
challenges and future outlook, and Section concludes
the paper.

II. RELATED WORKS



and scraping[10], indicating that general-purpose platforms
can increasingly take on operations once restricted to human
chemists. These works underscore that dexterous manipula-
tion, rather than mobility alone, is another key to advancing
laboratory autonomy.

Recent discussions in laboratory automation have con-
verged on the view that modularity is a key requirement
for achieving robustness, interoperability, and reusability
across systems [5]. Much of this modularity has so far been
realized at the level of station-based workflows, with each
step executed by a dedicated platform. However, such a
station-based perspective often neglects the general-purpose
potential of robotic manipulators, treating them as substitutes
for predefined modules rather than as versatile agents capable
of performing diverse actions. In parallel, digital frameworks
such as xDL [6] have sought to abstract experimental proce-
dures into machine-readable formats, enabling portability and
reproducibility across platforms. These abstractions are well
suited for describing chemical workflows, but they primarily
capture the sequence of procedures without detailing how the
underlying manipulations are performed. For example, the
same yDL “addition” step can be carried out by a syringe
pump on a Chemputer, by a pipetting head on an Opentrons
robot, or by a Kinova robotic arm [11], but the abstraction
does not specify which modality or scale is intended. The
lack of such specification results in general-purpose robots
being constrained to the programming of isolated procedures,
necessitating repetitive and task-specific development for
each new experimental protocol. Addressing this gap requires
a structured taxonomy of laboratory manipulations —- one
that explicitly defines the repertoire of skills underpinning
experimental practice and enables their reuse as abstractions
across diverse workflows.

B. Manipulation Taxonomies

There has been extensive work on taxonomies of robotic
manipulation, which generally serve two main purposes.
First, they act as a descriptive language that organizes
complex actions into structured categories, thereby reducing
ambiguity and deepening understanding of manipulation
problems. For instance, taxonomies for deformable object
handling [12] classify actions by deformation modes, energy
regimes, and interaction patterns, capturing the distinctive
challenges of non-rigid materials. Second, taxonomies can
inform the design of future systems, shaping both system
development and hardware design. An example is the ab-
straction of human grasping into a compact set of primitives
with modifiers [13], which has guided the design of grasp
controllers and robotic hands. At a broader scope, field-
wide schemes [14] highlight how taxonomies can encode
skills in machine-readable form, unifying heterogeneous task
descriptions and facilitating transfer across applications.

Building on these perspectives, a domain-specific taxon-
omy tailored to chemistry laboratories is developed. The aim
is not only to catalogue the diverse manipulations required
in experimental practice, but also to identify the fundamental
challenges they present and distill them into a structured ab-

straction. Such an abstraction provides a reusable foundation
that can inform the design of laboratory automation systems,
guide the specification of robotic capabilities, and promote
consistency across heterogeneous workflows.

C. LLMs in Robotics and Chemistry

Large language models have recently attracted growing in-
terest in robotics due to their ability to map natural language
into structured instructions and to support general reasoning.
Early work demonstrated that LLMs can be prompted to gen-
erate executable code, enabling robots to perform complex
behaviors without task-specific training [15]. This “code-
as-policy” approach illustrates how foundation models can
act as program synthesizers, translating human intent into
robot-executable routines , but it operates in an open-loop
manner, with no mechanism to regenerate or adapt code in re-
sponse to runtime feedback. Subsequent work advanced this
paradigm by introducing a closed-loop structure, in which
LLM-generated action proposals are continually evaluated
against an affordance-based value function [16], ensuring
that executed behaviors remain consistent with the robot’s ca-
pabilities and environmental constraints. Nevertheless, across
both approaches, the range of achievable behaviors remains
ultimately bounded by the scope of the underlying perception
and control APIs.

In chemistry automation, previous works have shown
the potential of large language models to translate natural-
language protocols into machine-usable forms [17]. For ex-
ample, natural-language procedures can be expressed in the
xDL domain-specific language (DSL) and iteratively refined
through verifier-assisted prompting to ensure syntactic and
constraint validity [18], while more recent systems such
as ORGANA demonstrate that LLM-guided assistants can
move beyond protocol translation to plan, schedule, and
execute multi-step laboratory experiments [19]. Despite this
promise, such approaches highlight the continuing need for
verification and structural alignment: LLMs are not inher-
ently constrained by the grammar or semantics of DSLs
like xDL, and xDL itself was designed as a workflow
abstraction for automation pipelines rather than as a direct
specification of robot-level actions. A similar issue arises
more broadly in robotics, where LLM-generated plans must
still be grounded in diverse perception and control APIs
that are typically hand-integrated. To reduce this reliance
on ad-hoc interfaces, the Model Context Protocol (MCP)
[20] offers a standardized interface for exposing robot skills
as callable functions, thereby providing a more systematic
path to ground high-level instructions in executable actions
and unifying robot APIs within a common framework, for
instance by connecting chemistry-centric descriptions like
xDL with robot-executable primitives.

Together, these efforts highlight the importance of both
structured action representations and standardized interfaces.
This taxonomy extends this direction by providing a com-
prehensive repertoire of chemistry-specific skills that can be
instantiated as callable functions within an MCP framework,
thereby ensuring both broad coverage of laboratory actions



required and ease of integration with LLM-based planning
systems.

III. METHODOLOGY

To develop a meaningful and generalizable taxonomy of
robotic manipulations, a systematic process was established
to identify and justify the core features underpinning such
tasks. The process began with the collection of representative
video data capturing a diverse range of laboratory manipula-
tions. In collaboration with chemists, the raw demonstrations
were segmented and annotated to isolate individual actions,
ensuring that the decomposition reflected authentic labora-
tory practice. These segmented actions enabled the analysis
of recurring patterns of interaction, from which a set of can-
didate features fundamental to describing manipulation be-
haviors was extracted. The importance of these features was
then validated through experimental measurements, ensuring
that they were not arbitrarily selected but instead reflected
essential aspects of the tasks. The following subsections
detail this pipeline, from data collection to feature validation.

A. Data Sources and Collections

The dataset was compiled from a series of video demon-
strations produced by the Chemistry Teaching Laboratories.
These videos are used to provide practical training for un-
dergraduate students in Chemistry, Biochemistry, and Natural
Sciences, and constitute a systematic instruction in laboratory
manipulations offered during their degree programmes. This
material is representative for the present study, as the skills
taught to students capture fundamental and widely applicable
techniques of laboratory practice. In total, 91 videos were
collected, amounting to 273 minutes of footage. This dataset
provides a foundation for systematically reviewing the core
features of chemical manipulation tasks.

B. Task Segmentation and Annotation

Each teaching video was manually reviewed and seg-
mented into discrete manipulation steps through joint effort
between roboticist and chemists. Segmentation was carried
out at the level of atomic actions (e.g., pouring a liquid,
adjusting a pipette), defined as the smallest meaningful
unit of laboratory interaction. Annotators then labelled each
segment using intuitive descriptions of the observed action.
Importantly, the labellers were not restricted to a predefined
action set; instead, labels were allowed to emerge directly
from the data, capturing the full diversity of manipulations
present in the demonstrations. A few examples of the anno-
tated frames and labels are shown in Figure |Z[ In total, 563
instances of individual action segments were identified and
annotated across the dataset. The resulting set of raw labels
was subsequently refined through an iterative consolidation
process. Redundant or synonymous labels were merged, and
closely related variants were grouped into broader categories.
This process yielded a reduced vocabulary of distinct ma-
nipulation types, which served as the basis to find some
common characteristics.

Wipe grease
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Pull glass stopper
linear coupling
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Fig. 2: Examples of annotated frames from the chemistry
teaching videos. Each frame shows a representative labora-
tory manipulation alongside its natural-language description
(top) and later corresponding taxonomic actions(bottom).

C. Feature Extraction

To progress from descriptive action labels toward a princi-
pled taxonomy, three core features were identified as consis-
tently underlying laboratory manipulations. These features,
derived from recurring patterns observed across the annotated
demonstrations, capture aspects of control that are critical to
task execution:

1) Force Dependence: Many manipulations are defined
not solely by geometric trajectories but also by the wrench
signals (forces and torques) that arise during execution.
Importantly, such forces may need to be applied even in
the absence of motion. For example, inserting a stopper
requires maintaining axial force at the final stage to achieve
a proper seal, even once the stopper has stopped moving.
Similarly, rotating a clamp screw relies on applying torque
until sufficient resistance is reached. In both cases, wrench
feedback governs the termination condition and ensures
successful task completion.

2) Motion Pattern: Most manipulations can be character-
ized as either one-off motions or inherently repetitive/cyclic
motions. A key difference lies in whether the action could
in principle be completed in a single execution or whether
repetition is unavoidable. For example, pouring liquid until a
target volume is reached may be performed as a continuous
one-off motion (holding the container steadily) or as a
repetitive sequence (tilting in small increments until the
desired level is achieved). This makes pouring a one-off
action, and each increment is itself a complete execution. By
contrast, actions such as shaking or stirring cannot naturally
be executed in a single motion; they require repeated cycles
until a condition is satisfied (e.g., the solution becomes
homogeneous), which is why stirring is classified as cyclic.

3) Control Directness: Manipulations vary in how di-
rectly the operator (or robot) interacts with the target object.



In some cases, control is direct — for example, grasping and
lifting a vial acts immediately on the object of interest. In
other cases, control is indirect, mediated through another
object: tilting a flask to pour liquid affects the liquid only via
the container. This distinction reflects the degree of coupling
between the motion and the outcome. Indirect actions often
require additional care in planning and execution compared
to direct ones.

Together, these three features provide a compact yet ex-
pressive basis for describing manipulation behaviors, serving
as the key to distinguish for the taxonomy presented in the
following section.

D. Force Dependency Validation

While motion pattern and control directness are apparent
from visual observation and readily understood in intuitive
terms, the role of force dependence required explicit vali-
dation. A series of experiments was therefore conducted to
measure the forces applied during representative laboratory
manipulations. The results confirmed that many actions rely
critically on detecting and regulating wrench signals.

1) Experiment Setup: The experiments were conducted
using a Franka Research 3 robotic arm equipped with a Bota
Systems LaxONE six-axis force—torque sensor, mounted
between the robot flange and a parallel gripper. To securely
hold various laboratory instruments, a custom fixture was
designed, consisting of a 3D-printed outer frame with sili-
cone gel padding. The gel not only provided compliance to
minimize the risk of breakage but also compensated for small
mismatches between the printed geometry and the actual
glassware, ensuring a snug fit. The fixture was mounted on
an aluminum frame fixed to the desk to provide a stable
working environment for accurate force measurements. The
overall setup is illustrated in Figure [3]

To examine the role of force dependence in laboratory
procedures, a representative set of manipulation tasks was
selected, spanning both force-intensive and visually guided
actions. The force-dependent group included operations such
as pushing a cap onto a vial, tightening a screw cap, and
inserting a needle into a rubber septum, each hypothesized
to require force feedback for reliable completion. As a point
of contrast, tasks expected to rely primarily on visual cues,
such as rotating a tap handle, were also incorporated. Each
task was executed by the robot following pre-programmed
trajectories, while recording force—torque wrench data, end-
effector poses, and RGB images from a side-mounted Intel
RealSense D435 camera that captured the manipulation de-
tails. All data streams were synchronized and logged at 10
Hz for subsequent analysis.

2) Analysis of Results: A representative selection of
recorded force profiles is shown in Figure [ with the
full dataset provided in the website. These results illustrate
how force dependence plays a central role in determining
termination conditions for laboratory manipulations.

The comparison between tap rotation and clamp-screw
tightening (Figure Ab) demonstrates that, although the two

Silicon Gel Infill

3D Print Frame

Fig. 3: Experimental setup for force—torque measurements.
A Franka Research 3 robotic arm with a parallel gripper
and a Bota Systems LaxONE sensor was used to manipulate
laboratory glassware. The inset highlights the custom 3D-
printed fixture with silicone gel padding, mounted on an
aluminum frame to securely hold instruments.

actions share similar rotational motions, they rely on funda-
mentally different stopping signals. In tap rotation, the task is
governed by visual control: the operator adjusts the angular
position to achieve the desired flow rate, and the torque
profile remains relatively flat. By contrast, screw tightening
is not defined by a visual target but by achieving sufficient
resistance to secure the connection. Here, the steadily rising
torque around the z-axis provides the termination criterion,
ensuring the cap is stable without over-tightening.

Cap insertion (Figure fa) demonstrates a similar principle,
where termination is defined by reaching a threshold of
axial force. In this case, the experimental data show how
the force profile rises as the cap is pressed into place,
with the threshold marking completion of the seal. While
these experiments did not directly measure the consequences
of exceeding this threshold, in laboratory practice it also
functions as a safety constraint: applying excessive force
risks fracturing the glass vial, while insufficient force results
in an incomplete seal. Thus, this task exemplifies how a
single threshold can simultaneously signal completion and
delimit safe operation.

Needle insertion into a rubber septum (Figure further
illustrates the importance of force-based stopping signals.
The force increases steadily until a puncture occurs, at
which point the profile exhibits a sudden drop (in force).
Crucially, this transition cannot be inferred from the visual
scene—even at timestamps ¢; and ¢, immediately before
and after puncture, the setup appears almost identical. The
force profile therefore provides the only reliable indication
of task completion.

Taken together, these results validate that force and torque
signals are essential in defining termination conditions for
certain laboratory manipulations. While visual feedback may


https://tarmac-paper.github.io/

Pushing Cap Rotating Tap Tightening Screw t1 = 207

- 320 —~
° — Fx i — S 1251 — Fx ']
0] —r £ =1 5 — 0
g —_—F S 15 T € 10.0{ = Fz
o bt o
% 15 E —— Tightening Screw § 75
& = 1.0{ == Rotating Tap e tiiit
210 & z
@ € v 5.0
= = z
35 303 2
o g S 25
(=} o (=} ey
w a w P s ot
S £00 < 00

0 100 200 300 0 50 100 150 200 0 50 100 150 200

Frame Index (10 Hz Sampling)

(@ (b)

Fig. 4: Experimental validation of force dependence in representative laboratory manipulations. (a) Cap insertion:
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Red,

green, and blue lines denote forces along the = (F}), y (Fy), and z (F,) axes. A sharp peak in F, provides a termination
signal, ensuring a secure seal without glass breakage. (b) Rotational comparison: Red, green, and blue lines denote torques
about the = (13), y (Ty), and z (1%) axes. Solid and dashed curves correspond to clamp screw tightening and tap rotation,
respectively. Tap rotation shows relatively flat torque profiles governed by visual alignment, whereas screw tightening exhibits
steadily increasing torque, indicating task completion. (c) Needle puncture: Red, green, and blue lines denote forces along
the x (F), y (Fy), and z (F,) axes. Insertion into a rubber septum produces a force build-up followed by a sudden drop
upon puncture—a transition undetectable by vision alone. Together, these results highlight the critical role of force—torque
signals in defining reliable stopping conditions for laboratory actions.

Dependent | Control |  Motion | Count + | Taxonomic Category

v X X 198 Coupling

X X X 169 Positioning
x / x 3 Tooling

v 4 X 64

X X 4 44

X 4 v/ 13 Agitating
4 X 4

4 4 "4 0

TABLE I: Feature-based characterization of annotated labo-
ratory actions. Highlighted cells mark the dominant feature
combinations that define the four taxonomic categories, while
the final row shows that no actions were observed with all
three features present.

suffice in some cases (e.g., tap rotation), other tasks depend
on thresholds or patterns in force or torque to determine
completion reliably.

IV. THE TAXONOMY

To move from individual annotated actions toward a
structured taxonomy, each action was characterized using
the three key features introduced in Section [[II-C} whether
it was force dependent, whether it involved indirect control,
and whether it was realized through repetitive motion. Each
annotated action in the dataset was marked against these fea-

tures, producing a systematic representation of its execution
profile.

From these profiles, and guided by the semantic intent
of the actions, four overarching categories were distilled to
capture the essential modes of laboratory manipulation:

« Positioning: non—force-dependent, one-off operations

under direct control.

o Coupling: force-dependent, one-off operations used to

secure or release attachments.

o Agitating: actions characterized by repetitive or cyclic

motion.

o Tooling: operations that manipulate substances indi-

rectly by controlling a laboratory tool.

The results of the feature-based mapping are summarized
in Table [, which shows how the annotated actions cluster
according to their execution requirements. Highlighted cells
indicate the dominant feature that correspond to each cate-
gory. For instance, force-dependent but non-cyclic operations
align with coupling tasks such as fastening or releasing
attachments, while cyclic operations map onto agitating tasks
such as stirring or swirling. Positioning tasks, by contrast,
lack all three features, reflecting their direct, one-off nature.

The table also reveals less intuitive combinations, which
nonetheless fit consistently within the taxonomy. For exam-
ple, actions that are both indirect and force-dependent, such
as squirting, fall under tooling: although force is essential
for control, the defining characteristic is that the operation is
mediated through a tool for example using a syringe to inject



liquids. Similarly, indirect cyclic actions such as stirring or
swirling are grouped under agitating, while cyclic, force-
dependent actions like grinding also fall into this category.
The final row, which would correspond to actions that are
simultaneously indirect, force-dependent, and cyclic, remains
empty, as no such cases were observed.

Within each category, sub-actions are further distinguished
along dimensions such as translational versus rotational mo-
tion, with additional individual actions defined to capture the
diversity of laboratory practice. Collectively, these categories
constitute TARMAC—a taxonomy for robotic manipulation
in chemistry—which provides a structured action space link-
ing experimental intent to robotic execution. The details of
the taxonomy are as follows.

A. Positioning

Positioning refers to the controlled placement of objects
by overcoming minor resistive forces such as gravity or
friction to achieve a desired pose. Four main subtypes are
distinguished.

o Transitional positioning involves placing an object with-
out substantially altering its orientation, as in setting a
beaker on a benchtop or placing a weigh boat.

e Rotational positioning adjusts the orientation of an
object during placement, for example when rotating a
vial to align its label.

e Insertive positioning requires introducing an object into
a constrained space, such as fitting a filter into a flask
neck or docking a condenser.

o Sliding positioning maintains surface contact while
moving an object to its target location, for example
when closing a lid to ensure a proper seal.

B. Coupling

Coupling describes the joining or separation of objects
through the application of controlled force to overcome
resistance, friction, or material deformation, often using force
measurements as endpoint signals.

o Transitional coupling involves direct force along a lin-
ear path, such as pushing to install a tight stopper.

e Rotational coupling relies on torque, as when screwing
or unscrewing a cap.

o FElastic coupling temporarily deforms a material when
operating—for instance, stretching a rubber tube to
widen an opening for attachment.

e Penetrative coupling is a process where sustained force
is applied to a material until its structural failure occurs,
as in puncturing a septum with a needle.

C. Tooling

Tooling encompasses manipulations performed using tools
or indirect forces such as gravity or applied pressure, thereby
avoiding direct hand—object contact.

e Scooping is the immersion of a tool through particulate

or fluid to capture a defined volume, such as collecting
a reagent with a spatula.

o Spotting deposits or transfers small material quantities
through surface tension or capillary action, without
tool—surface contact, for instance when applying a sam-
ple to chromatography paper.

e Pouring transfers liquid by tilting a vessel to regulate
gravity-driven flow, such as decanting a solution from
a beaker.

o Squirting uses a pressure difference to aspirate or eject
fluid through an orifice, as performed by a pipette.

D. Agitating
Agitating encompasses repetitive or periodic motions that

promote mixing, homogenization, cleaning, or material mod-
ification.

e Shaking involves vigorous back-and-forth or vertical
movements to accelerate mixing, for instance when
dissolving solids in a volumetric flask.

o Swirling provides a gentler alternative, using circular
motion to distribute material, such as coating the interior
of a vial with solution.

o Stirring mixes liquids or suspensions by moving a rod
or similar implement through the medium.

o Twisting applies axial rotation to manipulate material
flow, for example when distributing grease between
glassware joints.

o Swabbing consists of repeated tool-surface contact to
apply or remove material in confined areas, as in
cleaning the neck of a flask whereas

o Wiping achieves broader coverage by drawing a tool
across a surface, such as cleaning a pipette tip or
blotting liquid from a slide.

o Wrapping secures materials by encircling them with a
flexible medium, such as sealing a flask with parafilm.

o Grinding reduces particle size or texture through abra-
sive contact, as in crushing solids with a mortar and
pestle.

V. ANALYSIS AND DISCUSSION

This section evaluates the proposed taxonomy through
two complementary studies. First, laboratory videos were re-
annotated to build a dual natural-language and taxonomic
dataset, illustrating how protocols can be linked to robot-
executable skills. Second, complete laboratory tasks were
decomposed into taxonomic primitives, demonstrating that
the taxonomy provides sufficient coverage and granularity
for practical application.

A. Chemistry Manipulation Dataset

To further evaluate the proposed taxonomy, chemistry
laboratory videos and teaching materials were re-annotated
using both the taxonomy and the original natural-language
descriptions. The original annotations provide narrative de-
scriptions such as “pipette solvent”, whereas the taxonomic
relabeling maps these into structured action primitives such
as “squirting”, thereby capturing the underlying execution
policy. Each annotated instance comprises the natural lan-
guage description, the corresponding taxonomic label, the
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Fig. 5: Distribution of taxonomic action labels across annotated chemistry teaching videos. Each bar represents the frequency
of actions within the four major categories of TARMAC: positioning (blue), coupling (brown), tooling (green), and agitating
(red). The relatively balanced counts across positioning, coupling, and tooling indicate comprehensive coverage of core
manipulations, while the lower frequency of agitating actions reflects their more limited but specialized role in laboratory
practice. This distribution highlights both the representativeness of the dataset and the discriminative structure of the

taxonomy.

associated video frame, and the full video sequence (see
Figure . This dual annotation, together with the feature
profiles, produces a dataset that is both human-interpretable
and machine-actionable, facilitating downstream applications
in benchmarking, imitation learning, and language-to-action
translation.

The distribution of labels across the taxonomy was further
analyzed, as shown in Figure [5] The results indicate that the
categories of positioning, coupling, and tooling are relatively
balanced, whereas agitating is comparatively underrepre-
sented. This distribution highlights the discriminative power
of the taxonomy: the near-even allocation across the major
categories suggests a well-structured division of manipula-
tion skills, while the lower frequency of agitating actions
reflects their more limited role in laboratory procedures.

B. Task Decomposition

To evaluate the comprehensiveness of the taxonomy, a
task decomposition study was conducted on undergraduate
laboratory experiments. Starting from the brief instructions
provided in the laboratory manual, a chemist expanded each
step into the concrete actions they would actually perform
in practice. These were then translated into taxonomic prim-
itives, producing a structured breakdown of the experiment.
An example is shown in Table [[I, where the hydrolysis of a
nitrile is decomposed from human-oriented instructions into
taxonomic actions.

This exercise demonstrates that the taxonomy, originally
derived from teaching-lab videos, provides sufficient cov-
erage to represent essential operations required in typical
laboratory experiments. By grounding protocol instructions
in explicit taxonomic actions, the taxonomy is shown to
capture both the breadth and granularity of skills required for

real laboratory practice, offering a comprehensive foundation
for robotic execution.

VI. PRELIMINARY EXPERIMENT VALIDATION

The taxonomy introduced in Section [[V] provides a struc-
tured description of laboratory manipulations. To move be-
yond its role as a descriptive scheme, its applicability to
practical robotic execution was examined. For this purpose,
a preliminary framework was developed in which the taxon-
omy was instantiated as executable action primitives. Within
this framework, targeted experiments could be planned and
executed, and workflows constructed directly from taxo-
nomic actions—thereby validating the taxonomy’s utility in
real-world laboratory contexts.

A. Taxonomy-Driven Framework

Our validation framework is designed to demonstrate how
the proposed taxonomy can move beyond a descriptive
role and actively support robotic execution in laboratory
environments. The framework is guided by two requirements.
First, chemists need an interface that is natural and intuitive,
without requiring programming expertise. Second, robotic
systems must remain flexible, adapting to the variability of
experimental conditions and evolving laboratory needs.

Within this framework, the taxonomy provides the struc-
ture that connects human intent with robotic capability. The
taxonomy is instantiated as a library of action primitives, en-
suring a direct one-to-one mapping between each taxonomic
skill and a minimal robot-executable operation (e.g., the
taxonomic action “pouring” is executed by the pour action
primitive). Frequently recurring combinations of primitives
are further encapsulated into a macro, offering reusable
higher-level commands. By exposing both primitives and



Experimnent: Hydrolysis of a nitrile
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A 9 M solution of sulfuric acid in water was carefully prepared in a conical flask. A 100 mL single-neck round-bottomed flask with a stirrer
bar was charged with 4-nitrophenylacetonitrile followed by 9 M sulfuric acid (25 mL) and the suspension was refluxed for 30 minutes.
After this time, the solution was allowed to cool to room temperature before the addition of water (25 mL) and cooling in an ice-bath. The
crude product was collected via vacuum filtration. The crude solid was dissolved in ethyl acetate (20 mL) and extracted with 2 M sodium
hydroxide solution (20 mL). The two layers were separated, and the aqueous layer was acidified with 3 M hydrochloric acid (20 mL) and
extracted with ethyl acetate (20 mL). The organic layer was dried over magnesium sulfate, filtered and concentrated to yield the product
which was recrystallised from 20% ethanol in water.
Action needed to conduct experiments Taxonomy Category Taxonomy action
A magnetic stirrer bar was placed in round bottom flask (RBF) Positioning Insertive positioning
0.486 g 4-nitrophenylacetonitrile was weighed onto weighing boat Tooling Scooping
Weighing boat was tipped into RBF Tooling Pouring
25 mL of sulfuric acid solution was added to RBF Tooling Pouring
Condenser added to the top of RBF Positioning Insertive positioning
Suspension was heated to reflux for 30 minutes.
Condenser was removed Positioning Transitional positioning
25 mL water added. Tooling Pouring
RBF placed an ice-bath for cooling. Positioning Transitional positioning
Sinter funnel placed on top of Biichner flask and rubber bung. Positioning Insertive positioning
Contents of RBF poured into sinter funnel. Tooling Pouring
Solid collected scraped into RBF. Tooling Scooping
20 mL ethyl acetate added to RBF. Tooling Pouring
Solution poured into separating funnel. Tooling Pouring
20 mL sodium hydroxide solution (2 M) added to separating funnel. Tooling Pouring
Stopper placed on top of separating funnel. Coupling Force Coupling
Separating funnel shaken. Agitating Shaking
Stopper removed from separating funnel. Coupling Force Coupling
Beaker placed underneath separating funnel. Positioning Transitional positioning
Tap of separating funnel opened. Positioning Rotational Positioning
New beaker placed underneath separating funnel. Positioning Static positioning
Tap of separating funnel opened. Positioning Rotational Positioning
20 mL hydrochloric acid (3 M) added to 1st measuring beaker. Tooling Pouring
Mixture from measuring beaker added to separating funnel. Tooling Pouring
20 mL ethyl acetate added to separating funnel. Tooling Pouring
Stopper placed on top of separating funnel. Coupling Force Coupling
Separating funnel shaken. Agitating Shaking
Stopper removed from separating funnel. Coupling Force Coupling
Beaker placed underneath separating funnel. Positioning Transitional positioning
Tap of separating funnel opened to remove 1st layer. Positioning Rotational Positioning
New beaker placed underneath separating funnel. Positioning Transitional positioning
Tap of separating funnel opened to remove 2nd layer. Positioning Rotational Positioning
Beaker placed underneath separating funnel removed. Positioning Transitional positioning
Magnesium sulfate added to beaker to reach ‘snow globe effect’. Tooling Scooping
Funnel placed on top of new RBF. Positioning Insertive positioning
Contents of beaker poured into sinter funnel. Tooling Pouring
Funnel removed from RBF. Positioning Transitional positioning
RBF attached to rotary evaporator to remove solvent. Positioning Insertive Positioning
Product from RBF scraped into conical flask. Tooling Scooping
Conical flask placed on hotplate. Positioning Static positioning
20% ethanol in water mixture added dropwise to conical flask. Tooling Squirting
Solid dissolved in the flask. Agitating Swirling

TABLE II: Task decomposition of the hydrolysis of a nitrile experiment. The high-level laboratory protocol is expanded into
the concrete manipulations a chemist would perform (left), which are then mapped to structured TARMAC action primitives
(right), showing how implicit laboratory practice can be systematically expressed through the taxonomy.



macros through a standard interface, the framework allows
natural language task specifications to be translated into
concrete robotic actions.

To realize this translation, the recently proposed Model
Context Protocol (MCP) [20] was adopted, which stan-
dardizes the way large language models (LLMs) and other
reasoning models interact with external tools. In the im-
plementation, every primitive and macro derived from the
taxonomy was registered as an MCP tool. This allows a
user instruction—such as “prepare a solution”—to be decom-
posed into a sequence of taxonomic actions, executed step by
step while incorporating feedback. The MCP interface also
enables dynamic modification of the available skill set: new
macros can be registered during an experiment, or specific
tools can be disabled to enforce safety constraints.

Beyond robotic manipulation, the framework remains
open to integration with other laboratory automation mod-
ules. External services—such as existing robotic platforms,
scheduling software, or sensing systems—can be exposed as
MCP tools alongside the taxonomy-driven actions, enabling
seamless coordination. In this way, the taxonomy serves as
the backbone of the framework, grounding abstract protocol
descriptions in a structured and extensible library of robot-
executable skills while retaining flexibility and safety through
standardized tool interaction.

B. Action Primitives and Macros

A central feature of this framework is the instantiation
of the taxonomy into action primitives. Each primitive
corresponds to a minimal, parameterized skill represent-
ing a distinct laboratory operation (e.g., pouring, stirring,
swirling). These primitives capture the fine granularity of
manipulations and serve as the fundamental building blocks
from which more complex experimental routines can be
assembled. Importantly, the taxonomy does not prescribe
how a primitive must be realized: a single unit may be
implemented using motion planning pipelines, rule-based
controllers, or modern learning-based approaches, depending
on the laboratory setup. This flexibility ensures that the
taxonomy can be grounded in heterogeneous robotic systems
while maintaining a common representational layer.

Analysis of laboratory procedures indicates that many
operations recur in predictable patterns. For example, “pick
up beaker — pour contents — mix” appears across multiple
solution preparation protocols. To capture such regularities,
macros are introduced as reusable higher-level commands
constructed from compositions of primitives. Macros abstract
away low-level details that are often implicit in labora-
tory practice (e.g., clamping a vessel before heating) while
encapsulating common experimental routines into modular,
reusable workflows. In this way, macros reduce cognitive
load, simplify task specification, and enable scalable automa-
tion without sacrificing the ability to revert to fine-grained
primitives when precision is required.

Macros can be derived in several ways. The most di-
rect approach is manual composition, where developers or
lab technicians explicitly combine primitives into reusable

workflows. Beyond this, more accessible methods can make
macro creation faster and more intuitive. For example, LLM-
based synthesis can exploit the model’s coding and planning
abilities, expanding a chemist’s natural-language instruction
into a structured sequence of primitives. Graphical pro-
gramming interfaces such as Blockly or Scratch provide a
drag-and-drop environment where primitives are assembled
visually, lowering the barrier for non-programmers. Finally,
vision-language models may infer common routines directly
from video demonstrations, suggesting macros grounded in
real laboratory practice. Both manual definition and LLM-
based synthesis were explored in the implementation, but the
broader point is that grounding macros in taxonomic actions
enables diverse methods of creation, ensuring adaptability
across different users, contexts, and levels of expertise.
Together, primitives and macros form a layered skill
library grounded in the taxonomy. Primitives ensure coverage
of the essential operations that define laboratory practice,
while macros provide scalable abstractions that align with
experimental routines. This dual structure enables flexible
task execution across levels of granularity, supporting both
precise manipulation and efficient workflow automation.

Beaker 2

Beaker 1

Experiment Fume Hood

Fig. 6: Experimental setup for taxonomy-driven validation. A
Franka Research 3 robotic arm, positioned beside a standard
laboratory fume hood, is configured to perform representative
tasks. The workspace includes beakers pre-filled with solvent
and solute, along with a spatula used for stirring.

C. Experiment Setup

To validate the feasibility of the taxonomy-driven frame-
work, a series of proof-of-concept experiments was designed
in which representative primitives were implemented and
applied to complete a simple but meaningful laboratory
procedure: preparing a sodium chloride solution. The ex-
periments had two objectives: (1) to verify that primitives
instantiated from the taxonomy can be reliably executed on
a robotic platform, and (2) to demonstrate that higher-level
workflows can be composed from these primitives. Together,
these tasks provide an initial validation of the taxonomy



lets pour the content from beaker 1 to beaker 4

.

Tool Calls

tool call id: call rX3dOWc6jwwZJ27vqM18ubm0
name: trmcp-pouring,

arguments: {

from_container uri: instrument://beakerl,
to_container_uri: instrument://beaker4
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The contents of Beaker 1 (NaCl, 10g) have been poured into Beaker
4 (which contained 70ml of H20).

Beaker 4 now contains both water and NaCl. If you want to mix or
stir the solution to dissolve the salt, let me know!

stir it to dissolve please

— &

Tool Calls

tool call id: call KVd4h2ylvoZXUCulHmEKNBeY
name: trmcp-stirring,

arguments: {

container uri: instrument://beaker2,
stirring_tool_uri: instrument://spatula

Tool Calls

tool call id: call KVd4h2ylvoZXUCulHmEKNBeY /0‘0\

content: Stirring done: beaker 4 with spatula ‘\_5
o )
—i- =)

N

The solution in Beaker 4 has been stirred with the spatula to help
dissolve the NaCl in the water.

If you need to continue with another step or want to check the status
of the solution, just ask!

Fig. 7: Example execution trace of taxonomy-driven interac-
tion with a large language model (LLM). The model receives
a high-level natural-language instruction, decomposes it into
TARMAC primitives, and issues sequential tool calls.

and show its practical value in connecting protocol-level
instructions with robot-executable behaviors.

1) System Configuration: All experiments were conducted
using a Franka Research 3 robotic arm positioned beside a
standard laboratory fume hood. The workspace was arranged
with four beakers, each pre-assigned with contents (e.g.,
water or sodium chloride powder), and a spatula used as
the stirring tool. Figure [f] illustrates the experimental setup.

The robot was connected to an MCP server that exposed
a subset of action primitives representative of common labo-
ratory operations. For this proof-of-concept, three primitives
were implemented:

e Pouring: transfers liquid or powder contents from a
source beaker to a destination beaker (two parameters).

o Stirring: agitates the contents of a beaker using a
specified stirring tool (two parameters).

o Swirling: agitates the contents of a beaker by circular
motion without external tools (one parameter).

These primitives were selected because they are both fre-
quent in chemistry protocols and illustrative of two categories
in this taxonomy: tooling (pouring) and agitating (stirring,
swirling). Each primitive was implemented as an asyn-
chronous Python function that invokes a motion planning
pipeline to generate collision-free trajectories for the robotic
arm. Input parameters and return values were explicitly
defined; for example, the pouring primitive accepts the
identifiers of the source and destination beakers and returns
the URI of the destination beaker upon completion.

2) Task Design: Two different tasks were designed, both
centered on preparing a sodium chloride solution — a canon-
ical laboratory procedure involving the combination of a
solvent (water) with a solute (sodium chloride powder)
followed by mixing. This task was selected because it is
both representative of real laboratory practice and sufficiently
simple to allow controlled evaluation.

A foundation large language model (LLM), specifically
GPT-4.1 used without task-specific fine-tuning or domain
adaptation, served as the decision-making agent. The LLM
interacted with the MCP server, which exposed the action
primitives as callable tools, thereby grounding high-level
instructions in executable robot actions.

Direct Task Execution: In this task, the LLM was
instructed only to prepare a sodium chloride solution. No
guidance was given on which primitives to use. The ex-
periment evaluated whether the model could autonomously
select the appropriate beakers, invoke the relevant primitives
(e.g., Pouring, Stirring/Swirling), and maintain the
correct sequence of operations to complete the preparation.

Action Macros Composition: This task examined
whether the LLM could generate a new action macro from
existing primitives. Instead of invoking Pouring and then
Stirring separately each time, the model was instructed
to create a higher-level tool (e.g., PrepareSolution) that
encapsulates the sequence.



Code Example 1: Code snippet of an action macro automatically generated by the LLM with instruction prompt ”lets
create a new tool such that it takes two beakers as input, if one is empty, use the other one, to pour into a target beaker.
and then do swirling and string to mix. finally return what beaker has been used if success.”. The macro encapsulates this
pour-and-mix sequence into a reusable higher-level command.

1 |async def beaker_ pour_mix (

2 beaker_a_uri: str, beaker_b_uri: str, target_beaker_uri: str, stirring_tool_uri: str

3 |) —> str:

4 nmmwn

5 Pour from the first non-empty of two source beakers into a target beaker, then swirl and
— stir to mix.

6

7 Args:

8 beaker_a_uri: URI of the first source beaker.

9 beaker_b_uri: URI of the second source beaker.

10 target_beaker_uri: URI of the target beaker to receive contents.

11 stirring _tool_uri: URI of the stirring tool.

12

13 Returns:

14 The URI of the beaker that was poured from.

15

16 Raises:

17 ValueError: If any URI is not a non-empty string.

18 Exception: If pouring from both beakers fails (e.g., both empty or not found).

19 nmwn

20 for v in (beaker_a_uri, beaker_b_uri, target_beaker_uri, stirring_tool_uri):

21 if not isinstance(v, str) or not v.strip():

2 raise ValueError ("All URIs must be non-empty strings.")

23 try:

24 await provider.pouring (beaker_a_uri, target_beaker_uri)

25 used = beaker_a_uri

26 except Exception:

27 try:

28 awalt provider.pouring(beaker_b_uri, target_beaker_uri)

29 used = beaker_b_uri

30 except Exception as e:

31 raise e

£ awailt provider.swirling(target_beaker_uri)

33 await provider.stirring(target_beaker_uri, stirring_tool_uri)

34 return used

W

(b) Pick correct non-empty beaker

(d) Swirling (e) Pick up spatula (f) Stirring

Fig. 8: Illustration of macro composition and execution. (a—f) Execution of the macro on the robotic platform, showing the
robot preparing a sodium chloride solution by transferring solute into solvent and mixing. This demonstrates how TARMAC
primitives can be abstracted into macros, enabling scalable automation of laboratory workflows.



D. Analysis of Results

The two validation tasks collectively demonstrate the
feasibility of the proposed taxonomy-driven framework. Each
task highlights a different capability of the system: the
basic executability of primitives and the compositionality of
macros. Full execution traces and logs are provided in the
supplementary material.

The Direct Invocation task confirmed that individual
action primitives can be reliably executed in sequence. The
agent correctly selected the relevant beakers, invoked the
pouring primitive to transfer solvent into solute, and
followed with the instructed mixing operation. The execution
record (Figure (7)) shows that the correct sequence was com-
posed without additional guidance, validating that primitives
grounded in the taxonomy can be effectively mapped from
high-level instructions to low-level robotic actions.

The Macro Composition task demonstrated that the
framework supports dynamic abstraction. From prior
observations, the agent generated a reusable macro,
beaker_pour_mix, encapsulating the sequence of pouring
followed by stirring and swirling to mix. The automatically
generated code (Code Example 1) included parameter val-
idation and error handling, reflecting an understanding of
both functional and safety requirements. Once registered,
the macro was successfully invoked to prepare a solution
(Figure [8), confirming that higher-level routines can be
synthesized from primitives and reused as building blocks
across tasks.

Together, these results demonstrate the practical value
of the taxonomy as a bridge between protocol-level in-
structions and robot-executable behaviors. By instantiating
manipulation categories as primitives and supporting their
composition into macros, the taxonomy provides both cover-
age of laboratory manipulations and a scalable path toward
reusable automation modules. This proof-of-concept estab-
lishes a foundation for extending the primitive library and
formalizing macro collections in future work.

VII. CHALLENGES AND OUTLOOK

Our study highlights several challenges in bridging human
laboratory practice with robotic execution. A first observation
comes from comparing task decompositions with video-
based annotations. While human-written protocols typically
provide only high-level instructions, teaching-lab videos re-
veal many fine-grained actions that are essential for suc-
cessful execution. These implicit steps — such as securing
glassware before use — are trivial for human practitioners
but must be explicitly modeled for robots. This under-
specification represents a fundamental gap between human-
oriented laboratory documentation and the requirements of
robotic autonomy.

A second challenge concerns the inherent difficulty of cer-
tain laboratory manipulations. For instance, elastic coupling,
common in air-sensitive experiments, requires tight sealing
with rubber components. These actions are challenging not
only because they demand precise control in confined spaces,

but also because the lack of accurate models makes the be-
havior of elastic materials unpredictable. In practice, elastic
components often need to be stretched or expanded before
insertion, adding another layer of complexity. Similarly,
squirting actions, such as those performed with pipettes, are
more demanding than pouring because they require precise
yet indirect control over the velocity of liquid ejection, in
addition to interacting with elastic elements such as pipette
tips. Finally, some categories of actions are infrequent yet
equally challenging. For example, wrapping delicate glass-
ware demands both secure handling and extreme care to
avoid breakage —- skills that remain well beyond current
robotic dexterity.

Looking forward, these challenges also highlight promis-
ing directions. The taxonomy offers a framework for making
implicit knowledge explicit, thereby supporting the construc-
tion of standardized datasets and benchmarks that better re-
flect real laboratory practice. Advances in robotic hardware,
particularly dexterous end-effectors , force torque sensors
or tactile sensors, will be crucial to tackling elastic and
delicate manipulations. Ultimately, the taxonomy serves not
only as a descriptive tool but also as a stepping stone toward
robotic chemists capable of executing complex workflows
with reliability and precision. By identifying current gaps
and charting pathways for addressing them, this work lays
the groundwork for future systems that combine structured
representations, advanced perception, and adaptive control to
achieve higher levels of autonomy in the laboratory.

VIII. CONCLUSION

This work introduced TARMAC, a taxonomy for robot
manipulation in chemistry, designed to capture the core skills
underpinning laboratory practice. Derived from teaching-
lab demonstrations and validated through force—torque ex-
periments, TARMAC provides a structured vocabulary that
organizes manipulations by their functional role and exe-
cution requirements. At the same time, the analysis high-
lights challenges that remain, particularly in handling elastic,
delicate, and velocity-dependent manipulations that demand
more advanced sensing and control.

Beyond its descriptive value, the taxonomy can be in-
stantiated as robot-executable primitives and composed into
reusable macros, thereby bridging protocol-level descriptions
familiar to chemists with the concrete actions required by
robotic systems. Preliminary validation demonstrates that
TARMAC supports both direct execution of primitives and
the construction of higher-level workflows, enabling system-
atic reuse of skills and scalable automation.

Taken together, these contributions establish TARMAC
as a foundation for more interpretable, extensible, and
autonomous laboratory automation. Just as tarmac in the
physical world provides the structured surface upon which
vehicles travel, this taxonomy serves as a common ground
on which robotic chemists can operate. By making implicit
skills explicit, it opens new opportunities for benchmarking,
imitation learning, and integration with reasoning models
such as LLMs. Ultimately, taxonomy-driven approaches like



TARMAC have the potential to accelerate progress toward
reliable robotic chemists capable of executing complex ex-
perimental workflows with safety, precision, and adaptability.
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